The eta invariant for charged spinors in Taub-NUT

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 L133
(http://iopscience.iop.org/0305-4470/14/5/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The $\boldsymbol{\eta}$ invariant for charged spinors in Taub-NuT

C N Pope
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA and St John's College, Cambridge, England

Received 17 February 1981

Abstract

The Atiyah-Singer index theorem for the Dirac operator on a manifold with boundary involves a non-local term constructed from the eigenvalues of the Dirac operator on the boundary. This η invariant is evaluated for charged spinors on the left-invariant S^{3} boundary of the Taub-NUT instanton. It is shown that the index theorem is then in agreement with a previous explicit evaluation of the index in Taub-NuT.

In a compact four-dimensional Riemannian manifold M without boundary, the Ati-yah-Singer index theorem for the Dirac operator for charged spinors is

$$
\begin{equation*}
n_{+}-n_{-}=\frac{1}{192 \pi^{2}} \int_{M} \operatorname{Tr}(B) \wedge(B)+\frac{e^{2}}{8 \pi^{2}} \int_{M} F \wedge F \tag{1}
\end{equation*}
$$

where $n_{ \pm}$are the numbers of L^{2} solutions of the charged Dirac equation of positive (negative) chirality, (A) is the matrix valued curvature two-form of the manifold, F is the Maxwell two-form and e is the charge of the spinor fields (see, for example, Eguchi et al 1980 and references therein). If the manifold has a boundary ∂M then there are extra boundary correction terms to be added to the right-hand side of equation (1):

$$
\begin{equation*}
-\frac{1}{192 \pi^{2}} \int_{\partial M} \operatorname{Tr} \theta \wedge(H)-\frac{e^{2}}{8 \pi^{2}} \int_{\partial M} A \wedge F-\frac{1}{2}(\eta(0)+h) \tag{2}
\end{equation*}
$$

where θ is the second fundamental form of ∂M in M, A is the electromagnetic potential, and $\eta(0)$ and h are non-local terms depending only on the boundary ∂M, which are the terms of interest in this paper (Eguchi et al 1980).

The η invariant $\eta(0)$ is the analytic continuation to $s=0$ of the meromorphic function $\eta(s)$ defined for $R(s)>2$ by

$$
\begin{equation*}
\eta(s)=\sum_{\lambda \neq 0}|\lambda|^{-2} \operatorname{sign} \lambda \equiv \sum_{\lambda>0} \lambda^{-s}-\sum_{\lambda<0}(-\lambda)^{-s} \tag{3}
\end{equation*}
$$

where the sum is taken over the non-zero eigenvalues λ of the charged Dirac operator on the boundary manifold ∂M. h is the number of zero eigenvalues of the operator. We note for future reference that $\eta(0)$ is left invariant by a constant rescaling of all the eigenvalues, and hence by a constant conformal rescaling of the metric on ∂M.

In an earlier paper, the zero modes of the charged Dirac operator were investigated in the Taub-NUT gravitational instanton, in the presence of a self-dual electromagnetic
field (Hawking 1977, Pope 1978). The metric may be given as

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(\frac{r+M}{r-M}\right) \mathrm{d} r^{2}+\left(r^{2}-M^{2}\right)\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+4 M^{2}\left(\frac{r-M}{r+M}\right) \sigma_{3}^{2} \tag{4}
\end{equation*}
$$

where $r \geqslant M$ and the σ_{i} are a basis of left-invariant one-forms on the three-sphere, which may be parametrised by Euler angles (θ, ϕ, ψ) as

$$
\begin{align*}
& \sigma_{1}=\cos \psi \mathrm{d} \theta+\sin \psi \sin \theta \mathrm{d} \phi \\
& \sigma_{2}=-\sin \psi \mathrm{d} \theta+\cos \psi \sin \theta \mathrm{d} \phi \tag{5}\\
& \sigma_{3}=\mathrm{d} \psi+\cos \theta \mathrm{d} \phi
\end{align*}
$$

where $0 \leqslant \phi \leqslant 2 \pi, 0 \leqslant \psi \leqslant 4 \pi$. The apparent singularity at $r=M$ is just a removable metric singularity, and the manifold is non-compact and regular, with the topology R^{4} (Hawking 1977). It may be compactified by cutting off the radial coordinate r at some large distance r_{0}, thereby introducing a boundary $\partial M=S^{3}$ whose induced metric is

$$
\begin{equation*}
\mathrm{d} s^{2}=4\left(r_{0}^{2}-M^{2}\right)\left[\frac{1}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\frac{1}{4} 4 M^{2}\left(r_{0}+M\right)^{-2} \sigma_{3}^{2}\right] \tag{6}
\end{equation*}
$$

The self-dual electromagnetic field is

$$
\begin{equation*}
F=k\left[\frac{2 M}{(r+m)^{2}} \mathrm{~d} r \wedge \sigma_{3}-\left(\frac{r-M}{r+M}\right) \sigma_{1} \wedge \sigma_{2}\right] \tag{7}
\end{equation*}
$$

which may be derived from the potential

$$
\begin{equation*}
A=k\left(\frac{r-M}{r+M}\right) \sigma_{3} . \tag{8}
\end{equation*}
$$

Because the topology of the manifold is trivial, the integral of F over any closed two-surface is zero, and so there is no Dirac quantisation condition, which means that the constant k is arbitrary. Setting $k=\beta / 2 e$ for convenience, one finds that $e^{2} / 8 \pi^{2} \int_{M} F \wedge F=\frac{1}{2} \beta^{2}$. The curvature contribution to (1) is $-\frac{1}{12}$, and the surface integrals in (2) vanish, so

$$
\begin{equation*}
n_{+}-n_{-}=-\frac{1}{12}-\frac{1}{2}(\eta(0)+h) . \tag{9}
\end{equation*}
$$

In Pope (1978) it was shown by explicit calculation of the zero modes that

$$
\begin{equation*}
n_{+}-n_{-}=\frac{1}{2} n(n+1) \tag{10}
\end{equation*}
$$

where $n=[\beta]$, the greatest integer less than β (we are taking β to be positive, without loss of generality). In this paper we reconcile (10) with the index theorem result (9), by calculating $\eta(0)$ using the method of Hitchin (1974).

The approach will be to calculate the eigenvalues of the charged Dirac operator in the left-invariant metric

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{1}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\frac{1}{4} \mu^{2} \sigma_{3}^{2} \tag{11}
\end{equation*}
$$

on the three-sphere, and use these to evaluate $\eta(0)$ in the limit $\mu \rightarrow 0$, which can be seen from equation (6) to give the same limit (up to a constant conformal rescaling, which does not alter $\eta(0)$) as in the Taub-nut instanton when the boundary is sent to infinity ($r_{0} \rightarrow \infty$).

To find the eigenvalues of the Dirac operator P on $S^{3}, P \Psi=\lambda \Psi$, we introduce the notion of a spinor-valued zero-form Ψ, which may be represented as a two-component
column vector $\binom{u}{v}$. Exterior differentiation of Ψ is given by

$$
\begin{equation*}
D \Psi=\mathrm{d} \Psi+\sigma \Psi \tag{12}
\end{equation*}
$$

where $\sigma=\frac{1}{4} \tau_{a} \tau_{b} \omega_{a b}$, the spin connection; τ_{a} are the Pauli matrices and $\omega_{a b}$ are the connection forms for (11). In the orthonormal triad basis

$$
\begin{align*}
& e^{1}=\frac{1}{2} \sigma_{1} \tag{13}\\
& e^{2}=\frac{1}{2} \sigma_{2} \tag{14}
\end{align*} e^{3}=\frac{1}{2} \mu \sigma_{3} .
$$

The uncharged Dirac operator P acting on Ψ is thus

$$
\begin{equation*}
P \Psi=\mathrm{i} \tau_{a}\left\langle D \psi, e^{a}\right\rangle=\mathrm{i} \tau_{a} e^{a}(\Psi)+\frac{\mu^{2}+2}{\mu} \Psi \tag{15}
\end{equation*}
$$

where $e^{a}(\Psi)$ means ordinary differentiation of the scalar components u and v of Ψ. If Σ^{a} are the vectors dual to the left-invariant one-forms σ_{a}, then defining 'quantum mechanical' self-adjoint operators by $K^{a}=\mathrm{i} \Sigma^{a}$, and setting $K_{ \pm}=K_{1} \pm \mathrm{i} K_{2}$, the Dirac operator may be written as

$$
P=2\left(\begin{array}{cc}
\mu^{-1} K_{3} & K_{-} \tag{16}\\
K_{+} & -\mu^{-1} K_{3}
\end{array}\right)+\frac{\mu^{2}+2}{2 \mu} .
$$

The charged Dirac operator P_{A} is obtained by making the replacement $D \rightarrow D-\mathrm{i} e A$ in (15), and since we are interested in the case $A=k \sigma_{3}=(\beta / 2 e) \sigma_{3}$ (see equation (8)),

$$
P_{A}=\left(\begin{array}{cc}
\mu^{-1}\left(2 K_{3}-\beta\right) & 2 K_{-} \tag{17}\\
2 K_{+} & -\mu^{-1}\left(2 K_{3}-\beta\right)
\end{array}\right)+\frac{\mu^{2}+2}{2 \mu} .
$$

$K_{ \pm}$and K_{3} satisfy the usual commutation relations for angular momentum generators, and so adopting the notation $|s\rangle$ for a ${ }_{s} Y_{l m}$ spin-spherical harmonic (Goldberg et al 1967), the eigenvectors of P_{A} may be written as

$$
\begin{equation*}
\binom{a|s\rangle}{ b|s+1\rangle} \tag{18}
\end{equation*}
$$

for some constants a and b. The actions of $K_{ \pm}, K_{3}$ on $|s\rangle$ are

$$
\begin{equation*}
K_{ \pm}|s\rangle=[(l \mp s)(l \pm s+1)]^{1 / 2}|s+1\rangle \quad K_{3}|s\rangle=s|s\rangle \tag{19}
\end{equation*}
$$

with $|s| \leqslant l,|m| \leqslant l$. l may take integer or half-integer values. Thus for $-l \leqslant s \leqslant l-1$, one finds the eigenvalues λ or P_{A} are

$$
\begin{equation*}
\lambda=\frac{1}{2} \mu \pm \mu^{-1}\left[(2 s+1-\beta)^{2}+4 \mu^{2}(l-s)(l+s+1)\right]^{1 / 2} \tag{20}
\end{equation*}
$$

with degeneracy $d=2 l+1$ for each permitted value of s.
There are also two 'exceptional' cases, when $s=l$ or $s=-(l+1)$, for which respectively b or a in (18) vanish, with eigenvalues

$$
\begin{array}{ll}
\lambda=\mu^{-1}(2 l+1-\beta)+\frac{1}{2} \mu & d=2 l+1 \\
\lambda=\mu^{-1}(2 l+1+\beta)+\frac{1}{2} \mu & d=2 l+1 \tag{22}
\end{array}
$$

respectively.
We are interested in the $\mu \rightarrow 0$ limit. Since $\eta(0)$ is invariant under a constant simultaneous rescaling of all the eigenvalues, we may set $\lambda \rightarrow \mu \lambda$ before taking the limit
$\mu \rightarrow 0$, thereby obtaining finite eigenvalues. It is then clear that all the eigenvalues (20) will be symmetric between the positives and negatives in this limit making no net contribution to $\eta(s)$. The entire contribution to $\eta(s)$ comes from the exceptional cases (21) and (22), which after rescaling and setting $\mu=0$, are

$$
\begin{array}{ll}
\lambda=p-\beta & d=p \\
\lambda=p+\beta & d=p \tag{24}
\end{array}
$$

where $2 l+1=p$, and so p takes integer values, $p>1$. Without loss of generality we may take $\beta>0$, and so for $\beta \neq$ integer if $n=[\beta]$, the integer part of β,

$$
\begin{equation*}
\eta(s)=\sum_{p=1}^{\infty}(p+\beta)^{-s} p+\sum_{p=n+1}^{\infty}(p-\beta)^{-s} p-\sum_{p=1}^{n}(\beta-p)^{-2} p . \tag{25}
\end{equation*}
$$

Sums of the form of the first two terms in (25) may be evaluated at $s=0$ by expanding $(p \pm \beta)^{-s}$ in descending powers of p, to obtain an infinite series of Riemann zeta functions, in which only a finite number of terms remain when s is set to zero. Thus

$$
\begin{equation*}
\eta(0)=-\frac{1}{6}+\beta^{2}-n(n+1) \tag{26}
\end{equation*}
$$

For the case that β is an integer, there will be β zero eigenvalues in equation (23), and so one finds that for all $\beta>0$,

$$
\begin{equation*}
\eta(0)+h=-\frac{1}{6}+\beta^{2}-n(n+1) \tag{27}
\end{equation*}
$$

where $n=[\beta]$, the greatest integer less than β. Inserting this result into the index theorem (9), we recover the result (10) obtained by explicit calculation of Dirac zero modes in Taub-Nut.

Finally, we remark that this calculation may easily be extended to the case where S^{3} is factored by the cyclic group Z_{q} to give the lens space $L(1, q)$. This means that the Euler angle coordinate ψ is now the identified modulo $4 \pi / q$ (Gibbons et al 1979). The eigenfunctions on $L(1, q)$ are a subset of the S^{3} eigenfunctions derived above; namely, those which are periodic with period $4 \pi / q$. This periodicity must be analysed with respect to a non-rotating spinor dyad basis, and since the orthonormal triad rotates by $4 \pi / q$ under $\psi \rightarrow \psi+4 \pi / q$, the components of Ψ with respect to a non-rotating dyad basis will be

$$
\left(\begin{array}{cc}
a \mathrm{e}^{\mathrm{i} \psi / 2} & |s\rangle \tag{28}\\
b \mathrm{e}^{-\mathrm{i} \psi / 2} & |s+1\rangle
\end{array}\right)
$$

rather than equation (18).
As before, only the exceptional eigenvalues (21) and (22) will contribute to $\eta(s)$, and from (28) these will have $2 l+1=q p, p=$ integer $\geqslant 1$. The calculation of $\eta(0)+h$ proceeds in a manner similar to the S^{3} case, giving

$$
\begin{equation*}
\eta(0)=h=-\frac{1}{6} q+\beta^{2} / q-q n(n+1) \tag{29}
\end{equation*}
$$

where $n=[\beta / q]$, the greatest integer less than β / q.
This result enables one to calculate the index for charged spinors in the multi-Taubnut background, with metric (Hawking 1977)

$$
\begin{equation*}
\mathrm{d} s^{2}=V^{-1}(\mathrm{~d} \tau+\boldsymbol{\omega} \cdot \mathrm{d} \boldsymbol{x})^{2}+V \mathrm{~d} \boldsymbol{x}^{2} \tag{30}
\end{equation*}
$$

and self-dual Maxwell field generated by the potential

$$
\begin{equation*}
A=\beta V^{-1}(\mathrm{~d} \tau+\omega \cdot \mathrm{d} \boldsymbol{x}) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
V=1+\sum_{i=1}^{q} \frac{2 M}{\left|x-x_{i}\right|} \quad \nabla \wedge \omega=\nabla V \tag{32}
\end{equation*}
$$

Explicit calculation shows that the volume integral contributions (1) to the index are $-q / 12+\beta^{2} / 2 q$, which when combined with (29) give

$$
\begin{equation*}
n_{+}-n_{-}=\frac{1}{2} q n(n+1) \tag{33}
\end{equation*}
$$

which is of course an integer for all values of β.

Acknowledgments

The author is grateful to G W Gibbons for many helpful discussions. Work supported in part by NSF Grant PHY77-27084, and St John's College, Cambridge, England.

References

Eguchi T, Gilkey P B and Hanson A J 1980 Phys. Rep. 66 No 6
Gibbons G W, Pope C N and Römer H 1979 Nucl. Phys. B 157377
Goldberg J N, Macfarlane A J, Newman E T, Rohrlich F and Sudarshan E C G 1967 J. Math. Phys. 82155
Hawking S W 1977 Phys. Lett. 60A 81
Hitchin N J 1974 Adv. Math. 141
Pope C N 1978 Nucl. Phys. B 141432
Rohrlich F and Sudarshan E C G 1967 J. Math. Phys. 82155

