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LETTER TO THE EDITOR 

The 7 invariant for charged spinors in Taub-NUT 

C N Pope 
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 
and 
St John's College, Cambridge, England 

Received 17 February 1981 

Abstract. The Atiyah-Singer index theorem for the Dirac operator on a manifold with 
boundary involves a non-local term constructed from the eigenvalues of the Dirac operator 
on the boundary. This invariant is evaluated for charged spinors on the left-invariant S3 
boundary of the Taub-NUT instanton. It is shown that the index theorem is then in 
agreement with a previous explicit evaluation of the index in Taub-NUT. 

In a compact four-dimensional Riemannian manifold M without boundary, the Ati- 
yah-Singer index theorem for the Dirac operator for charged spinors is 

where a+ are the numbers of L2 solutions of the charged Dirac equation of positive 
(negative) chirality, @ is the matrix valued curvature two-form of the manifold, F is the 
Maxwell two-form and e is the charge of the spinor fields (see, for example, Eguchi et a1 
1980 and references therein). If the manifold has a boundary aM then there are extra 
boundary correction terms to be added to the right-hand side of equation (1): 

where 8 is the second fundamental form of aM in M, A is the electromagnetic potential, 
and ~ ( 0 )  and h are non-local terms depending only on the boundary aM, which are the 
terms of interest in this paper (Eguchi et a1 1980). 

The 77 invariant ~ ( 0 )  is the analytic continuation to s = 0 of the meromorphic 
function ~ ( s )  defined for R(s )>  2 by 

where the sum is taken over the non-zero eigenvalues A of the charged Dirac operator 
on the boundary manifold aM. h is the number of zero eigenvalues of the operator. We 
note for future reference that ~ ( 0 )  is left invariant by a constant rescaling of all the 
eigenvalues, and hence by a constant conformal rescaling of the metric on aM. 

In an earlier paper, the zero modes of the charged Dirac operator were investigated 
in the Taub-NUT gravitational instanton, in the presence of a self-dual electromagnetic 
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field (Hawking 1977, Pope 1978). The metric may be given as 

d s 2 =  (-) r + M  dr2+(r2-M2)(u:  +u:)+4M2(-)u: r - M  
r - M  r + M  (4) 

where r == M and the ui are a basis of left-invariant one-forms on the three-sphere, 
which may be parametrised by Euler angles (e, 4, +) as 

cr1=cos+d8+sin$sinedq5 

u2 = -sin + dB +cos $ sin 8 d 4  

u ~ = ~ + + c o s  8 d 4  
( 5 )  

where 0 s 4 s 277, 0 s JI s 4 ~ .  The apparent singularity at r = M is just a removable 
metric singularity, and the manifold is non-compact and regular, with the topology R 
(Hawking 1977). It may be compactified by cutting off the radial coordinate r at some 
large distance ro, thereby introducing a boundary aM = S 3  whose induced metric is 

( 6 )  
ds2=  4(ri  -M2)[i(u? +u2)+ t4M2( r0+M)  -2 u3] .  2 

The self-dual electromagnetic field is 

which may be derived from the potential 

r - M  
r + M  

A = k( - )  u 3 .  

Because the topology of the manifold is trivial, the integral of F over any closed 
two-surface is zero, and so there is no Dirac quantisation condition, which means 
that the constant k is arbitrary. Setting k =P/2e  for convenience, one finds that 
e 2 / 8 T 2 J M F ~ F = 3 P 2 .  The curvature contribution to (1) is -A, and the surface 
integrals in (2) vanish, so 

n+ - n- = --E-- : (T(O)+h) .  (9 )  

(10) 

In Pope (1978) it was shown by explicit calculation of the zero modes that 
1 n+-n-=, -n(n+l)  

where n = [ P I ,  the greatest integer less than P (we are taking P to be positive, without 
loss of generality). In this paper we reconcile (10) with the index theorem result (9), by 
calculating ~ ( 0 )  using the method of Hitchin (1974). 

The approach will be to calculate the eigenvalues of the charged Dirac operator in 
the left-invariant metric 

(11) 
1 2 2  ds2 =:(U: + U ; )  +q.~ u 3  

on the three-sphere, and use these to evaluate ~ ( 0 )  in the limit p.+ 0, which can be seen 
from equation (6) to give the same limit (up to a constant conformal rescaling, which 
does not alter ~ ( 0 ) )  as in the Taub-NUT instanton when the boundary is sent to infinity 
(ro + a). 

To find the eigenvalues of the Dirac operator P on S 3 ,  P Y  = AV, we introduce the 
notion of a spinor-valued zero-form W, which may be represented as a two-component 
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column vector (U") .  Exterior differentiation of 1I' is given by 

D* = d*+ df ( 1 2 )  
where U = i7a7bw,b9 the spin connection; T ,  are the Pauli matrices and w a b  are the 
connection forms for ( 1  1 ) .  In the orthonormal triad basis 

( 1 3 )  1 1  2 1  3 1  e = z g l  e =?a2 e = i p f f 3  

The uncharged Dirac operator P acting on V is thus 

P 2 + 2 w .  P* = iT,(D+, e ") = i?-,e" (9) +- 
CL 

where e"(*) means ordinary differentiation of the scalar components U and ZI of 9. If 
Z" are the vectors dual to the left-invariant one-forms a", then defining 'quantum 
mechanical' self-adjoint operators by K" = E",  and setting K ,  = K I  f iK2, the Dirac 
operator may be written as 

The charged Dirac operator PA is obtained by making the replacement D + D -ieA 
in ( 1 5 ) ,  and since we are interested in the case A = ka3  = ( P / 2 e ) u 3  (see equation (8)), 

(17) 
2K- p 2 + 2  +-. CL -l(2K3 - P )  

P A = (  2K+ -p-'(2K3-p,)  2 p  

K ,  and K3 satisfy the usual commutation relations for angular momentum generators, 
and so adopting the notation Is) for a ,YL, spin-spherical harmonic (Goldberg et a1 
1967), the eigenvectors of PA may be written as 

for some constants aand b. The actions of K,, K3  on Is) are 

K&) = [ ( I  s ) ( l  f s + l)]"'Is + 1 )  K31S) = s b )  (19) 

with Is1 6 1, Iml G 1. 1 may take integer or half-integer values. Thus for -1 G S  G 1 - 1 ,  
one finds the eigenvalues A or Pa are 

(20) 

There are also two 'exceptional' cases, when s = 1 or s = - ( I  + l ) ,  for which respec- 

A =$p f p - ' [ ( 2 ~  + 1 - p ) 2  + 4p2( l -  s ) ( l +  s + 1)]1'2 

with degeneracy d = 21 + 1 for each permitted value of s. 

tively b or a in ( 1 8 )  vanish, with eigenvalues 

A = /L1(21+ 1 - P ) + $ p  d = 2 1 + 1  ( 2 1 )  

A = p-l(2E+ 1 + P ) + i p  d = 2 1 + 1  ( 2 2 )  

respectively. 
We are interested in the p + 0 limit. Since ~ ( 0 )  is invariant under a constant 

simultaneous rescaling of all the eigenvalues, we may set A + pA before taking the limit 
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p + 0, thereby obtaining finite eigenvalues. It is then clear that all the eigenvalues (20) 
will be symmetric between the positives and negatives in this limit making no net 
contribution to 7 (3). The entire contribution to 7 (s) comes from the exceptional cases 
(21) and (22), which after rescaling and setting p = 0, are 

A = p - P  d = p  (23) 

A = p + p  d = p  (24) 
where 21 + 1 = p ,  and s o p  takes integer values, p > 1. Without loss of generality we may 
take p > 0, and so for p # integer if n = [ p ] ,  the integer part of p, 

'x 

7b)= c ( P + P ) - " P +  f ( P - P ) - " P -  i ( P - P ) - 2 P .  (25) 
p = l  p = n + l  p = l  

Sums of the form of the first two terms in (25) may be evaluated at s = 0 by expanding 
( p  kp)-s in descending powers of p ,  to obtain an infinite series of Riemann zeta 
functions, in which only a finite number of terms remain when s is set to zero. Thus 

q ( 0 ) = - ~ + p 2 - n ( n + 1 ) .  (26) 

For the case that P is an integer, there will be p zero eigenvalues in equation (23), 

7)(O)+h =-B+p2-n (n+1)  (27) 

where n =[PI, the greatest integer less than p. Inserting this result into the index 
theorem (9), we recover the result (10) obtained by explicit calculation of Dirac zero 
modes in Taub-NUT. 

Finally, we remark that this calculation may easily be extended to the case where S 3  
is factored by the cyclic group 2, to give the lens space L ( 1 , q ) .  This means that the 
Euler angle coordinate 4 is now the identified modulo 41r/q (Gibbons eta1 1979). The 
eigenfunctions on L(1, q )  are a subset of the S 3  eigenfunctions derived above; namely, 
those which are periodic with period 47r/q. This periodicity must be analysed with 
respect to a non-rotating spinor dyad basis, and since the orthonormal triad rotates by 
4 r / q  under (I/ + + + 41r/q, the components of with respect to a non-rotating dyad 
basis will be 

and so one finds that for all p > 0, 

rather than equation (18). 
As before, only the exceptional eigenvalues (21) and (22) will contribute to ~ ( s ) ,  

and from (28) these will have 21 + 1 = qp, p = integer a 1. The calculation of 77 (0) + h 
proceeds in a manner similar to the S 3  case, giving 

q(0 )  = h = -1 6q + P / q  - w ( n  + 1) (29) 

where n = [P /q] ,  the greatest integer less than p/q .  

NUT background, with metric (Hawking 1977) 
This result enables one to calculate the index for charged spinors in the multi-Taub- 

(30) ds2 = V-' (dT + o dx)2 + V dx2 

A = PV-'(dT +o dx) (31) 

and self-dual Maxwell field generated by the potential 
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where 

Explicit calculation shows that the volume integral contributions (1) to the index are 
- q / 1 2  + p 2 / 2 q ,  which when combined with ( 2 9 )  give 

( 3 3 )  1 n + - n - = q q n ( n + l )  

which is of course an integer for all values of p. 
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